kniost

谁怕,一蓑烟雨任平生

0%

LeetCode 51. N-Queens

51. N-Queens

Difficulty:: Hard

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens’ placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
Input: 4
Output: [
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],

["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.

Solution

Language: Java

使用Set存储已有位置 50%

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class Solution {

private char[] boardRow;
public List<List<String>> solveNQueens(int n) {
List<List<String>> result = new ArrayList<>();
if (n <= 0) {
return result;
}
boardRow = new char[n];
Arrays.fill(boardRow, '.');
// 0 for row, 1 for diagonal,2 for right lean diagonal
Set<Integer>[] sets = (Set<Integer>[])new HashSet[3];
for (int i = 0; i < sets.length; i++) {
sets[i] = new HashSet<>();
}
dfsHelper(n, sets, new int[n], 0, result);
return result;
}

private void dfsHelper(int n, Set<Integer>[] sets, int[] cur, int row, List<List<String>> result) {
if (row >= n) {
result.add(convert(cur));
return;
}
for (int col = 0; col < n; col++) {
if (!sets[0].contains(col) && !sets[1].contains(row + col) && !sets[2].contains(row - col)) {
sets[0].add(col);
sets[1].add(row + col);
sets[2].add(row - col);
cur[row] = col;
dfsHelper(n, sets, cur, row + 1, result);
sets[0].remove(col);
sets[1].remove(row + col);
sets[2].remove(row - col);
}
}
}

private List<String> convert(int[] cur) {
List<String> res = new ArrayList<>();
for (int i : cur) {
boardRow[i] = 'Q';
res.add(new String(boardRow));
boardRow[i] = '.';
}
return res;
}
}

使用数组存储已有位置 96%

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class Solution {
public List<List<String>> solveNQueens(int n) {
List<List<String>> result = new ArrayList<>();
if (n <= 0) {
return result;
}
List<List<Integer>> lines = new ArrayList<>();
// 因为有 2 * n 个斜行
boolean[][] sets = new boolean[3][n * 2 + 1];
dfsHelper(n, lines, 0, new ArrayList<>(), sets);
parseResult(lines, result, n);
return result;
}

private void dfsHelper(int n, List<List<Integer>> lines, int index, List<Integer> line, boolean[][] sets) {
if (index == n) {
lines.add(new ArrayList<>(line));
return;
}
for (int i = 0; i < n; i++) {
// 防止出现负数
int left = index - i + n;
int right = index + i;
if (sets[0][i] || sets[1][left] || sets[2][right]) {
continue;
}
line.add(i);
sets[0][i] = true;
sets[1][left] = true;
sets[2][right] = true;
dfsHelper(n ,lines, index + 1, line, sets);
line.remove(line.size() - 1);
sets[0][i] = false;
sets[1][left] = false;
sets[2][right] = false;
}
}

private void parseResult(List<List<Integer>> lines, List<List<String>> result, int n) {
char[] lineChars = new char[n];
Arrays.fill(lineChars, '.');
for (List<Integer> line : lines) {
List<String> one = new ArrayList<>();
int prev = 0;
for (int col : line) {
lineChars[prev] = '.';
lineChars[col] = 'Q';
one.add(new String(lineChars));
prev = col;
}
lineChars[prev] = '.';
result.add(one);
}
}
}