Difficulty:: Medium
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
Example 1:
1 2 3 4 5 6 7 8
| Input: matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] target = 3 Output: true
|
Example 2:
1 2 3 4 5 6 7 8
| Input: matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] target = 13 Output: false
|
Solution
Language: Java
两次二分法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
| class Solution { public boolean searchMatrix(int[][] matrix, int target) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) { return false; } int m = matrix.length; int n = matrix[0].length; int start = 0, end = m - 1; while (start + 1 < end) { int mid = start + (end - start) / 2; if (matrix[mid][0] == target) { return true; } else if (matrix[mid][0] > target) { end = mid; } else { start = mid; } } int row = 0; if (matrix[end][0] <= target) { row = end; } else { row = start; } start = 0; end = n - 1; while (start + 1 < end) { int mid = start + (end - start) / 2; if (matrix[row][mid] == target) { return true; } else if (matrix[row][mid] > target) { end = mid; } else { start = mid; } } return matrix[row][start] == target || matrix[row][end] == target; } }
|
不使用二分
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| class Solution { public boolean searchMatrix(int[][] matrix, int target) { if (matrix.length == 0) return false; int r = 0; int c = matrix[0].length-1; while (c >= 0 && r < matrix.length) { if (matrix[r][c] > target) { c--; } else if (matrix[r][c] < target) { r++; } else { return true; } } return false; } }
|